Relationship between protein O-linked glycosylation and insulin-stimulated glucose transport in rat skeletal muscle following calorie restriction or exposure to O-(2-acetamido-2-deoxy-d-glucopyranosylidene)amino-N-phenylcarbamate.
نویسندگان
چکیده
AIMS AND BACKGROUND Protein O-linked glycosylation is regulated in vivo by the concentration of hexosamine substrates. Calorie restriction (60% of ad libitum intake) for 20 days causes decreased UDP-N-acetylhexosamine levels and increased insulin-mediated glucose transport in rat skeletal muscle. Conversely, prolonged incubation (19 h) of muscle with O-(2-acetamido-2-deoxy-D-glucopyranosylidene)amino-N-phenyl-carbamate (PUGNAc; an inhibitor of N-acetyl-beta-D-glucosaminidase) is characterized by increased O-linked glycosylation and insulin resistance. We aimed to determine the calorie restriction effect on O-linked glycosylation and characterize the temporal relationship between PUGNAc-induced O-linked glycosylation and insulin resistance. HYPOTHESIS A calorie restriction protocol characterized by decreased muscle hexosamine levels will result in a global reduction in O-linked glycosylated proteins in muscle, and PUGNAc-induced insulin resistance will coincide with increased O-linked glycosylation. METHODS Plantaris muscle and liver from rats (ad libitum or calorie restricted) were analysed for O-linked glycosylation using two antibodies against different O-linked N-acetylglucosamine epitopes. Also, rat epitrochlearis muscles were incubated for 8.5 h +/- 100 mum PUGNAc prior to measurement of [(3)H]-3-O-methylglucose transport and O-linked glycosylation. RESULTS Calorie restriction did not alter protein O-linked glycosylated levels in muscle or liver. Incubation with PUGNAc for 8.5 h resulted in increased in O-linked glycosylation but unaltered basal or insulin-stimulated glucose transport. CONCLUSIONS The delay between O-linked glycosylation and insulin resistance in muscle incubated with PUGNAc suggests an indirect, relatively slow mechanism for insulin resistance. The effect of calorie restriction on insulin action in muscle is unlikely to be the direct result of a global change in protein O-linked glycosylation.
منابع مشابه
Prolonged incubation in PUGNAc results in increased protein O-Linked glycosylation and insulin resistance in rat skeletal muscle.
Increased flux through the hexosamine biosynthetic pathway and increased O-linked glycosylation (N-acetylglucosamine [O-GlcNAc]) of proteins have been implicated in insulin resistance. Previous research in 3T3-L1 adipocytes indicated that insulin-stimulated glucose uptake and phosphorylation of Akt were reduced after incubation with O-(2-acetamido-2-deoxy-D-glucopyranosylidene)amino-N-phenylcar...
متن کاملElevated nucleocytoplasmic glycosylation by O-GlcNAc results in insulin resistance associated with defects in Akt activation in 3T3-L1 adipocytes.
Increased flux of glucose through the hexosamine biosynthetic pathway (HSP) is believed to mediate hyperglycemia-induced insulin resistance in diabetes. The end product of the HSP, UDP beta-N-acetylglucosamine (GlcNAc), is a donor sugar nucleotide for complex glycosylation in the secretory pathway and for O-linked GlcNAc (O-GlcNAc) addition to nucleocytoplasmic proteins. Cycling of the O-GlcNAc...
متن کاملGlucosamine inhibits angiotensin II-induced cytoplasmic Ca2+ elevation in neonatal cardiomyocytes via protein-associated O-linked N-acetylglucosamine.
We previously reported that glucosamine and hyperglycemia attenuate the response of cardiomyocytes to inositol 1,4,5-trisphosphate-generating agonists such as ANG II. This appears to be related to an increase in flux through the hexosamine biosynthesis pathway (HBP) and decreased Ca2+ entry into the cells; however, a direct link between HBP and intracellular Ca2+ homeostasis has not been establ...
متن کاملGlucosamine protects neonatal cardiomyocytes from ischemia-reperfusion injury via increased protein-associated O-GlcNAc.
Increased levels of protein O-linked N-acetylglucosamine (O-GlcNAc) have been shown to increase cell survival following stress. Therefore, the goal of this study was to determine whether in isolated neonatal rat ventricular myocytes (NRVMs) an increase in protein O-GlcNAcylation resulted in improved survival and viability following ischemia-reperfusion (I/R). NRVMs were exposed to 4 h of ischem...
متن کاملO-GlcNAc Modification of NFκB p65 Inhibits TNF-α-Induced Inflammatory Mediator Expression in Rat Aortic Smooth Muscle Cells
BACKGROUND We have shown that glucosamine (GlcN) or O-(2-acetamido-2-deoxy-D-glucopyranosylidene)amino-N-phenylcarbamate (PUGNAc) treatment augments O-linked-N-acetylglucosamine (O-GlcNAc) protein modification and attenuates inflammatory mediator expression, leukocyte infiltration and neointima formation in balloon injured rat carotid arteries and have identified the arterial smooth muscle cell...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Acta physiologica Scandinavica
دوره 183 3 شماره
صفحات -
تاریخ انتشار 2005